Discontinuous energy shaping control of the Chaplygin sleigh

نویسندگان

  • Joel Ferguson
  • Alejandro Donaire
  • Richard H. Middleton
چکیده

In this paper we present an energy shaping control law for set-point regulation of the Chaplygin sleigh. It is well known that nonholonomic mechanical systems cannot be asymptotically stabilised using smooth control laws as they do no satisfy Brockett’s necessary condition for smooth stabilisation. Here, we propose a discontinuous control law that can be seen as a potential energy shaping and damping injection controller. The proposed controller is shown to be robust against the parameters of both the inertia matrix and the damping structure of the open-loop system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of the Discrete Chaplygin Sleigh

This paper studies the dynamics of the discrete Chaplygin sleigh. Properties such as discrete momentum and measure conservation are explored.

متن کامل

The Euler – Lagrange Equations for Nonholonomic Systems

This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conse...

متن کامل

A Geometric Approach to the Optimal Control of Nonholonomic Mechanical Systems

In this paper, we describe a constrained Lagrangian and Hamiltonian formalism for the optimal control of nonholonomic mechanical systems. In particular, we aim to minimize a cost functional, given initial and final conditions where the controlled dynamics are given by a nonholonomic mechanical system. In our paper, the controlled equations are derived using a basis of vector fields adapted to t...

متن کامل

Discrete Nonholonomic LL Systems on Lie Groups

This papers studies discrete nonholonomic mechanical systems whose configuration space is a Lie group G Assuming that the discrete Lagrangian and constraints are left-invariant, the discrete Euler–Lagrange equations are reduced to the discrete Euler–Poincaré–Suslov equations. The dynamics associated with the discrete Euler–Poincaré–Suslov equations is shown to evolve on a subvariety of the Lie ...

متن کامل

Motions and Stability of a Piecewise Holonomic System : the Discrete

We discuss the dynamics of a piecewise holonomic mechanical system: a discrete sister to the classical non-holonomically constrained Chaplygin sleigh. A slotted rigid body moves in the plane subject to a sequence of pegs intermittently placed and sliding freely along the slot; motions are smooth and holonomic except at instants of peg insertion. We derive a return map and analyze stability of c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.06278  شماره 

صفحات  -

تاریخ انتشار 2018